VIDYA BHAVAN, BALIKA VIDYAPEETH

SHAKTI UTTHAN ASHRAM, LAKHISARAI, PIN:-811311

SUBJECT:- PHYSICS CLASS:- IXTH DATE:16/09/XX

SUBJECT TEACHER:- MR. NEEL NIRANJAN

CHAPTER 2. (FORCE & LAWS OF MOTION) (BASED ON NCERT PATTERN)

Question 1. From a rifle of mass 4 kg, a bullet of mass 50 g is fired with an initial velocity of 35 m/s. Calculate the initial recoil velocity of the rifle.

Answer:

...

٠.

- (m_1) Mass of rifle = 4 kg
- (m_2) Mass of bullet = 50 g = 0.05 kg
- (v_2) Velocity of bullet = 35 m/s
- (v_1) Recoil velocity of rifle = ?

According to the law of conservation of momentum

Momentum of rifle = momentum of bullet

$$m_1 v_1 = m_2 v_2$$

 $4 \text{ kg} \times v_1 = 0.05 \times 35 \text{ m/s}$
 $v_1 = \frac{0.05 \times 35}{4} = \frac{1.75}{4}$
 $v_1 = 0.4375 \text{ m/s}$

Recoil velocity of rifle = 0.4375 m/s

Question 2. Explain, why is it difficult for a fireman to hold a hose, which ejects a large amount of water at a high velocity.

Answer: The water that is ejected out from the hose in the forward direction comes out with a large momentum and equal amount of momentum is developed in the hose in the opposite direction and hence the hose is pushed backward. It becomes difficult for a fireman to hold a hose which experiences this large momentum.

Question 3:

A girl of mass 40 kg jumps with a horizontal velocity of 5 m/s onto a stationery cart with friction-less wheels. The mass of the cart is 3 kg. What is her velocity as the cart starts moving? Assume that there is no external unbalanced force working in the horizontal direction.

Answer:

4.65 m/s